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The expected value and the variance of the Baseband Assembly symbol signal-to-noise
ratio (SNR) estimation algorithm are derived. The SNR algorithm treated here is desig-
nated as the Split Symbol Moments Estimator (SSME). It consists of averaging the first
two moments of the integrated half symbols. The SSME is a biased, consistent estimator.
The SNR degradation factor due to the jitter in the subcarrier demodulation and symbol
synchronization loops is taken into account. Curves of the expected value of the SNR

estimator versus the actual SNR are shown.

l. Introduction

The Baseband Assembly! uses a Split Symbol Moments
Estimator (SSME) algorithm to estimate the symbol signal-
to-noise ratio (SNR) of the input signal. Here we describe the
SSME algorithm and give the expected value and the variance
of the SNR estimator. Two numerical examples corresponding
to the Voyager and the Pioneer missions are included to
illustrate its performance. As in previous Baseband Assembly
analyses (Refs. 1 and 2), Nyquist sampling rate is assumed.

Il. Statistics of the SNR Estimator

Figure 1 is a flow chart representation of the SSME algo-
rithm. Referring to this figure, the input to the SNR estimator
is a string of signal samples modeled as

0]

Vi = Sty

lDeep Space Network/Flight Project Interface Design Handbook, JPL
internal document 810-5, Rev. D, 1981.
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where
S = unitless random variable whose amplitude is propor-
tional to the information signal voltage
n; = unitless random variable whose amplitude is propor-

tional to the rms noise voltage
The first two moments of y,; are
Elyp = VS @)
E{G)) = S+ a2 ®)
It is assumed that {ni]-} =0
i=1,2,...,N,Nyquist samples per symbol
j=1,2,...,nsymbols

The variance of the noise process is assumed to be

o> = N,B, 4)




where N, is the one-sided noise spectral density, and B, is the
one-sided baseband noise-equivalent bandwidth.

As shown in Fig. 1, in the upper “‘arm” the samples from
the first half of a symbol are summed to produce Y,;. In the
lower “arm” the samples of the second half of a symbol are
summed to produce Y. In this analysis, it will be assumed
that the number of samples in both summers are equal at the
instants when Y,,; and Yy, are sampled. For this reason, ¥,
and Yp; have identical statistics. Making Y,; = Yy = Y}, the
mean value and the variance of ¥; will be, assuming that the
samples are independent, ’

N
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The factor d, designated as the SNR degradation factor, is
due to the phase jitter and timing jitter in the subcarrier
demodulation and symbol synchronization loops, respectively.
In general,

0<d <1 N

It can be shown that
9,1\ I7,1\*
dj = |1~ Py 1-2p, —]Ts' (8)

¢, =phase error in the subcarrier demodulation loop
during the jth symbol

where

7, =timing error in the symbol synchronization loop
during the jth symbol

pp = probability of symbol transition

T, = symbol time

In this preliminary analysis, it will be assumed that there is no
doppler stress in the tracking loops and that ¢; and 7; are
functions of the phase and timing jitter only. With this assump-
tion, ¢; and 7; will be constant during one update interval,
and the subscript j can be dropped, i.e., we will assume that
during the estimation interval

d=d. =d )

and, consequently, the statistics of ¥; will be equal to those of
Yy .

In the SSME algorithm, the random variables ¥, and Y
are combined to create two new random variables X, and
X, in the following way:

Xp = Ya Yﬁ (10)
and
— 2
Xy = (¥, + ¥ (1)

Then, as shown in Fig. 1, n samples of X, and X are averaged
in the second pair of summers to produce m,, and mg,. Finally,
m;, and m;s are scaled and combined to produce the random
variable R*, which is the SNR estimator of the SSME algo-

rithm, namely,

R = e (12)

The statistics of R* can be determined from the statistics of
the random variables along the two paths in Fig. 1. These
statistics are obtained in what follows. ‘

Using Eqs. (6) and (7) and the fact that Y, and Yj are
independent, the first two moments of their product defined
in Eq. (10) will be

ET I 2
X, = N? Sdj4 (13)

v2 = (N2 2 19\2
Xp = (Ns Sdj4 +Nsan/2) (14)

The first two moments of X defined by Eq. (11) are obtained
using Eq. (A-2) of Appendix A with u = N, v/Sd and ¢? =
N,02, namely,

X, =B
= N>8d + N o2 (15)
X, = E(G)
= 3N? 0% + 6N? Sd 0% + N} §? & (16)

Referring to Fig. 1, and using Eq. (A-5), the first and second
moments at the outputs of the second pair of summers will be

-
m, =X, (17)
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m)? = X% (18)
m, =X, (19)
(my)? = X7, (20)

The variances of m, and my, are obtained using Eq. (A-6)
with the moments obtained in Egs. (13) through (16), namely,

var (m)) = — (X2 ~ (X,)%)
2 2
= —2—2 (N Sd +¢?) (21)
- 4n s on
] | -y -
var (mss) ) [Xs2s - (Xss)zl
2 52
= 3" 2
= (2Ns Sd + an) (22)
The covariance of X  and Xp is, by definition,
A —_ —_
cov Xss,’ Xp) - E{(Xss _Xss) (Xp "Xp)} (23)

E{[(Y,+ Y)Y - (Y, + Y [Y, ¥, -7, Y]

E{[Y2-Y2)+ (Y - 1))

+2 (P2 Y2 (Y, (V) @4)

Using Egs. (6) and (7) in Eq. (A-2), the third moment of ¥,
and Yy is

v3 = y3

3 =
Y2 =y

=32 2 . Las cenin
s =7 V2 VBdol + 5 N (sa)Y

(25)

Inserting Egs. (6), (7), and (25) in Eq. (24) and dividing by

n, we obtain the covariance of ml', and ms's, namely,
N? ¢?
t ' - § n 2
cov (my,,me) = === (AN S, + 0,) (26)
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8§
ready to determine the statistics of the estimator R*. Using

Eq. (A-9), the expected value of R* defined by Eq. (12) is

— 2 p% 2px*
R* = R* + —1—‘|ia RY car (ml',)+ 3__1'2_2__ var(ms's)}

Having obtained the moments of m;', and m_ , we now are

2 am;f om'2

7 oy
m
14 mp
/ '
mss' mss
92R* '
W cov(mp,mss) + ...
P ss
m
p
m!
5
@7)

Inserting Eqs. (A-16), (A-18), (A-19),(21),(22),and (26) in
Eq. (27) and ignoring higher order terms, we obtain

R*=R +%(2§+ 1) (28)

where

(29)

is the degraded symbol SNR at the input to the SNR esti-
mator. From Eq. (28) we observe that R* is a biased but
consistent estimator (i.e., the bias goes to zero when n goes to
infinity).

The variance of R* is obtained using Eq. (A-10), namely ;

3R* \? : OR*\ 2
var (R¥) = (W) var (mp) + ,(am' ) var(ms's)
P L

m’ m'

P p

! 1]

mSS mSS

OR*OR* v

+2 W cov (mp NN (30)




Inserting Eqs. (A-15), (A-17), (A-19), (15), (16), and (26) in
Eq. (30), we obtain

var (R*) = 711-(1 + 4R +2R2) 31)

By defining the SNR of our estimator as the ratio

®*)?
#) =
SNR (R*) = — ® (32)
we see that
lim SNR(R*) = - (33)
R—0 n
lim SNR (R*) = % +2 (34)
R~

lll. Evaluation of d

Assuming that there are no doppler or quantization errors,
the SNR degradation factor defined in Eq, (8) is a function of
the phase jitter in the subcarrier demodulation loop and the
timing jitter in the symbol synchronization loop. Both jitter
processes, ¢ and 7, are modeled as Gaussian random variables
having zero mean and variance 0} and oZ, respectively.

According to Ref. 2, the variance of the phase error in the
subcarrier demodulation loop at update instants is

2=(._TLBE) _ﬂ.z (1+E_s_> (35)

g
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Repeating the steps of Ref. 2, it can be shown that the variance

of the timing error in the symbol synchronization loop at
update instants is -

T B .a T? E
_ LoL2"2 s s}
o2 = ( 5K a, ) Y [1+2<N0>(a1+a2)]

(36)

[ ]

where

B

) = one sided noise-equivalent bandwidth, j = 1 for

subcarrier loop, j = 2 symbol synch loop

T, = loop update time, assumed to be identical for both
loops

K = number of symbols between updates
T, = symbol time = 1/r

E N, =ratio of energy per symbol to noise spectral

density
A NS
=R=— 37)
20,
a, = M/N_= ratio of the width of the middle portion of

a symbol to the total symbol length
(typically 1/2)

ratio of the width of the transition portion
of a symbol to the total symbol length

(typically 1/4)

8
I
N
=

"

The expected value of d in Eq. (8) will be

0o

! _lely? 19
N L (1-37) exp(*ao—

2
¢

[ )

S —
u
=

O'r 2
+ 4p;( 7 ) 39)

In Appendix B two numerical examples are given for
parameter values typical of the Voyager and Pioneer missions.

In general, the bias in R*can be reduced by increasing »
(number of symbols in the estimator). Of course, we can
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improve our knowledge of R if we compensate for the effects
of the bias and the degradation factor in Eq. (28), i.e., we may
assume that the actual input SNR is

where (R¥) is the average value of many R* and d is our esti-
mate of d.

IV. Conclusions

In this article the expected value and the variance of the
SSME SNR estimator was derived. This estimator was shown
to be biased and consistent.

Figures 2 and 3 illustrate the numerical results for the
Voyager and Pioneer missions. At high signal SNR, the posi-
tive bias of the estimator dominates over the degradation
effect due to phase jitter in the tracking loops. At low SNR,
it is the other way around. Figure 4 is for the ideal case when
there is no jitter in the tracking loops (d =1).
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EXPECTED VALUE OF ESTIMATOR R*
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Fig. 1. Split symbol SNR estimator algorithm
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Fig. 2. Mean value and SNR of SNR estimator vs actual SNR:
Voyager mission
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Fig. 3. Mean value and SNR of SNR estimator vs actual SNR:

Pioneer mission
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Appendix A

Gaussian Moments

1. Relation Between Statistical and
Probabilistic Moments

Given a random variable x with Gaussian pdf G(u,0?) and
defining the rth moment as

= E {x"} (A-1)
the first four probabilistic moments of x will be
LA
My F M
“; = 12+ g2
wy = 307+
i, = 30* + 6077 + (A-2)

Defining m}f as the rth statistical moment of a random variable

1
r = '-n_ Z (x )r (A'3)
and the variance of m, as
1 n 2
var (m,) = E {7 ;(x].)’ —ur} (A4)
j=
Chapter 10 of Ref. 3 shows that
E{m} =p (A-5)
and
} 1 !
var (m)) = = [, ~ (4,)*] (A-6)
This is an ¢xact result.
Given a function g of K random variables x, ,
g(x) = g(x;, X%y, ..., X)) (A7)
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with means
E {xK} = 0,
600,09, .. .,0; (A-8)
it can be shown (Prob 10.17, Ref. 3) that
1 o 22
E {g0}= g@)+ 5 D —5&(x) | var (x;)
k=1 0%;
X =0
K K
1 9
S 5
i= j=1 1 -
o X =0
i (A-9)
The variance. of g(x) will be (Eq. (10.12) of Ref. 3)
e
var g6} = 3 [a—goo]? var (5,)
k=1 k :
X = 8
K X 4
+Zl Zgg(X) g(X) cov (x, x)+..
=1 Jj=
i#] X =0
(A-10)

2. Evaluation of the Derivatives
of the Estimator

In the SSME algorithm R* is computed from m; and

mss,namely,
m’ '
. 14
R* = (A-11)
2 (Z Mss ™ mp)
It can be shown that
1 m ol = 1
E{m}=m = N? S’d. (A-12)
and
E{m} =m, = NSd+N, o’ (A-13)




Let

E {m'} N_Sd
— = (A14)
? 4
ZE;Imss-mp; 20,

The following derivatives of the estimator R* are evaluated:

dR*

om’

2

(1+28) (A-15)

)2 (1+2R) (A-16)

[

(A-17)

(A-18)
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Appendix B
Constants Used to Derive Figs. 2—4

In order to illustrate the performance of the SSME esti-

mator, two cases are considered.

(1) Voyager

Datarate » = 20,000 symbols/second
Update time 7, = 2.5 seconds
K=pn = 2.5 X 20,000 symbols/loop
update
T, B, = 04153 (from Table I, Ref. 1
for both tracking loops
Noise bandwidth B, = 3.75 MHz
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(2) Pioneer

r 8 symbols/second

T, = 2.5seconds
K=n = 25X 8 symbols/loop update
T, B, = 04153 for both tracking loops
B, = 135kHz )

The performance of R* for the Magellan mission will be
better than for Voyager.

Using Egs. (35), (36), (39), (28), (29), (31), and (32),
Figs. 2 and 3 are obtained.




